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An analytical model appropriate for thermoelastic generation of acoustic waves in anisotropic
materials is presented for both plane and line sources. The interaction of acoustic waves produced
by subsurface sources with the bounding surface is accounted for using a method of images. For the
plane source case, analytical solutions are found that form an appropriate basis for an angular
spectrum of plane waves. For the line source case and for specific crystal symmetries and source
orientations, it is shown in the limit of strong optical absorption, a buried line source is equivalent
to applying a shear stress dipole at the bounding surface. However, contrary to the isotropic case, the
character and strength of the equivalent surface stress is a function of propagation
direction. © 2004 Acoustical Society of America.@DOI: 10.1121/1.1690080#
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I. INTRODUCTION

Since the early 1960s there has been considerable i
est in generating acoustic waves using pulsed laser irra
tion. The early experimental work in this field used low re
etition rate~10 Hz! Q-switched lasers with nanosecond pu
lengths for acoustic generation~nanosecond lase
acoustics!.1–3 A large part of the modeling effort for nano
second laser acoustics has relied on replacing the l
source with an equivalent set of stress boundary c
ditions.2,4 This equivalent stress distribution, which takes t
form of a shear stress dipole for isotropic material, h
proven to be extremely useful in describing many feature
laser generated~thermoelastic regime! acoustic waveforms
For instance, the epicental waveform,5,6 the surface acoustic
waveform,7 and the displacement directivity pattern8,9 are all
modeled accurately using a set of stress boundary condit
that are equivalent to a thermoelastic source in the limit
strong optical absorption.

In the mid-1980s a second type of pulsed laser acous
emerged that used high repetition rate (;80 MHz) ultrafast
laser pulses (;100 fs) to generate and detect acoustic pul
with pulse durations of a few picoseconds.10 The temporal-
resolution-afforded picosecond acoustics has enabled
searchers to concentrate on relating the source character
to fundamental physical processes.11–13 The modeling effort
for picosecond acoustics typically involves 1-D models t
exploit the simple experimental geometry.14

For nanosecond acoustics, work specific to laser sou
in anisotropic materials has been reported by Every
Sachse.15 In their work, data interpretation concentrated
wavefront analysis. By contrast, Mouradet al.,16 used the
Cagniard–deHoop17 method to obtain numerically the solu
tions for laser excitation in an anisotropic half-space wher
was assumed, in analogy to the isotropic case, that the
source could be modeled as a shear stress dipole appli
the material surface. In a similar approach Hurley a

a!Electronic mail: hurldh@inel.gov
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Spicer18 developed analytical solutions for thermoelas
generation in transversely isotropic materials by a laser
and laser point source.

For picosecond acoustics, work specific to elastically
isotropic materials has been primarily experimental in nat
and typically involves acoustic propagation in high symm
try directions.19–22 Recently, Hurleyet al.23 have reported
generation of picosecond shear waves using an ultra
pump probe method. This study involved laser generation
longitudinal waves in an isotropic aluminum film. A portio
of the longitudinal wave was mode converted to a sh
wave at the interface between the isotropic film and ani
tropic substrate. The shear acoustic waves were detecte
ing an off-axis polarization sensitive detection scheme.

In this article both plane~1-D problem geometry! and
line ~2-D problem geometry! thermoelastic sources, appro
priate for picosecond and nanosecond laser acoustics in
tically anisotropic half-spaces, are examined in detail usin
method of images to satisfy the stress boundary conditio
The method of images in general involves finding the so
tion to a particular boundary-value-problem by introducing
fictitious source~image source! in a boundless medium tha
together with the actual source satisfies the boundary co
tions. This method, which is employed routinely for electr
static problems, does not find the same popularity in
namic elasticity since, for typical applications, satisfyin
both the shear stress and normal stress conditions at
boundary is not possible.24 For the 1-D case considered i
this manuscript, the method of images is applied in a v
straightforward manner enabling an analytical solution
the displacements. In the 2-D case, a hybrid version of
method of images is used to obtain an equivalent set of st
boundary conditions for a limited set of crystal symmetrie
line-source orientations.

II. THEORETICAL DEVELOPMENT

The following equations provide a general description
thermoelastic generation in anisotropic materials~strain rate
coupling has been neglected!:
115(5)/2054/5/$20.00 © 2004 Acoustical Society of America
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k i j8 T,i j 2rCT,t1Q50, Cijkl8 ul,kj2rui,tt5bij8T,j . ~1!

The first equation is the linearized heat conduction equa
and the second is the equation of motion for a linear ela
material. The material constants,k i j8 , b i j8 , Ci jkl8 , r, andC,
are defined as the thermal conductivity tensor, the ther
pressure tensor, the elastic stiffness tensor, the mass de
and the specific heat respectively. The components of
placement and temperature are defined asui and T. In this
development the crystal axes, which coincide with the pri
coordinate system, have an arbitrary orientation relative
the unprimed axes~Fig. 1!. The crystalline symmetry as i
relates to the various tensor symmetries will be discusse
detail in the following sections. Since strain-rate coupli
has been neglected, the solution to the heat conduction e
tions can be sought without considering the elastic equat
of motion. Given that the spirit of this article is to provid
analytical insight into the role of elastic and thermal anis
ropy in thermoelastic generation of acoustic waves, heat
fusion will be neglected.4,25 The temperature fields for bot
the 1-D and 2-D case are found by taking the temporal in
gral of the absorbed laser energy (q0):

T1-D5T0H~ t !@d~x32a!2d~x31a!#,
~2!

T2-D5T0H~ t !d~x1!@d~x32a!2d~x31a!#,

whereT05q0 /rC. The source, which is concentrated a d
tance1a from the surface, is associated with an increase
temperature and the image source~sink!, which is concen-
trated a distance2a from the surface, is associated with
decrease in temperature~Fig. 1!.26 The solution procedure
for the elastic displacements for the 1-D and 2-D cases
volves applying a Fourier/Laplace transform to remove
pendence on the spatial and temporal variables:

F~h,k,s!5
1

2p
E

-`

` E
2`

` E
0

`

f ~x1 ,x3 ,t !

3e( ihx11 ikx32st)dtdx1dx3 . ~3!

FIG. 1. Source/sink specifications. The axis/plane of the line/plane sou
sink is perpendicular to thex3 axis and parallel with thex2 axis. The sepa-
ration plane is perpendicular to thex3 axis and is midway between th
source and sink. The crystal axes coincide with the prime coordinate sys
Inset: Conceptual illustration of the shear stress distribution at the separ
plane resulting from the source/sink combination for the 2-D case.
J. Acoust. Soc. Am., Vol. 115, No. 5, Pt. 1, May 2004
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For the 1-D case the solution depends only onx3 while the
2-D case depends on bothx1 andx3 . The transformed equa
tions take the form

N"ū5S, ~4!

where barred quantities refer to transformed variables anN
and S which are functions of the transform parameters
define in the Appendix. The transformed displacements
decoupled algebraically giving

ūi5
Di

D0
, D15det~N1!,

(5)

D05det~N!5d0~k22k1
2!~k22k2

2!~k22k3
2!,

where Ni is obtained fromN by replacing thei th column
with S andk i are the roots ofD0 . Using partial fractions the
transformed displacements may be represented as

ūi5(
j 51

3
Ai j

d0~k22k j
2!

, Ai j 5
Di~k j !

~k j2k r1!~k j2k r2!
,

~6!
r 1Þ j , r 2Þ j , r 2Þr 1 ,

where the amplitude coefficients,Ai j , are functions of
propagation direction for elastically anisotropic materials.

A. One-dimensional case

The Fourier inversion now may be written as

ūi~x3 ,s!5
2Āi j

d0
A2

p

]

]x3
FReE

0

` E~v,s,x3!

s2~v22v j
2!

dvG ,
Āi j 5

Ai j

ivE~v,s,x3!
, ~7!

E~v,s,x3!5~e2 ivsux32au2e2 ivsux31au!,

where the substitution,k5sv, has been made to facilitat
the transform inversion.27 The realv axis is identified as the
Fourier inversion path and the imaginaryv axis is identified
as the Cagniard path.17,28,29 Since all the poles lie on the
imaginaryv axis, the Fourier inversion is accomplished b
summing the residues along the imaginaryv axis:

E
0

` E~v,s,x3!

~v22v j
2!

dv5p iResH E~v,s,x3!

~v22v j
2! J

5¯p i S E~v j ,s,x3!

2v j
D . ~8!

Given that the dependence onx3 has been recovered, th
stresses at the separation plane (x350) can be evaluated:

s3 j5C3 j 138 u1,31C3 j 238 u2,31C3 j 338 u3,350. ~9!

A detailed analysis of the stress can be circumvented by
ing that the displacements are of the form

ui}
]2

]x3
2 ~e2v̄sux32au2e2v̄sux31au!. ~10!

Since the displacement components are even functions a
the planex350, it follows that the stresses at the separat

e/

m.
ion
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plane must be zero. Thus for the 1-D case, a source
image sink satisfy stress free conditions atx350 and, hence,
the separation plane can be identified with the bound
plane of an elastic half-space. Furthermore, this combina
of thermoelastic source and image sink in an unbounded
dium is equivalent to a thermoelastic source in an ela
half-space. Since the image sink produces a modal ampli
distribution that is of equal magnitude and opposite sign
that of the source, mode converted waves are not require
satisfy the stress-free boundary conditions. This, howeve
not the case for the somewhat similar problem of two ha
spaces having different orientations.23,30Dependence on time
is recovered using a table of Laplace transform-pairs giv

ui~x3,t !5ApĀi j
2

2d0
2 H H~x32a!H~ t2v̄ j~x31a!!¯

2H~a2x3!H~ t1v̄ j~x31a!!

2H~x31a!H~ t2v̄ j~x32a!!¯

1H~2x32a!H~ t1v̄ j~x32a!!
J .

~11!

As a check on the solution, it can be shown that the eig
vectors corresponding to the homogeneous solution can
formed from appropriate ratios of amplitude coefficien
Ai j . However, contrary to the homogeneous solution,
displacement waveforms given in Eqs.~11! form an appro-
priate bases for an angular spectrum of planes waves w
could be used in the calculation of acoustic diffraction res
ing from 2-D and 3-D thermal sources.31

To elucidate the effect of elastic anisotropy on t
source strength, consider a material with cubic symmetry
which the amplitude coefficient can be separated into
terms:

Āi j 5T0b0Gi j , ~12!

whereb0 is a function of both elastic and thermal constant32

and Gi j , which is a function of only the elastic constan
gives the variation of the displacement amplitudes w

FIG. 2. Amplitude coefficients versus rotation about thex2 axis @values

have been normalized usingĀ33(u50)]. Top: solid line corresponds to nor

malizedĀ11 @i.e., G11 /G33(u50)] and bottom line corresponds to norma

izedĀ13 @i.e.,G11 /G33(u50)]. Bottom: solid and dashed line correspond

normalizedĀ31 and Ā33 , respectively.
2056 J. Acoust. Soc. Am., Vol. 115, No. 5, Pt. 1, May 2004
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propagation direction. The strong dependence ofGi j on
propagation direction is illustrated in Fig. 2. The mater
constants are for single crystal Cu~cubic! and the initial
orientation corresponds to the prime axes coinciding with
unprime axes. The solution is solved repetitively as
sample is rotated about thex2 axis.

B. Two-dimensional case

For a two-dimensional source, analytical solutions ex
only for certain crystal symmetries and for certain sour
observation orientations.7,18 However, instead of finding ex
pressions for the displacements, the emphasis of this sec
will be on prescribing a set of stress boundary conditions t
is equivalent to a center of thermal expansion located at
bounding surface.33 Much of the groundwork has alread
been done in the previous section. The symmetr
orientations that will be discussed are given in Table I a
correspond to cases for whichD0 can be split into two parts
one of second order and one of forth order ink. Physically
this corresponds to waves that are polarized in the (x1 ,x3)
plane. Performing the same mathematical manipulati
given in the preceding section, the displacements can be
resented as

ū1~h,k,s!5
2 ihĀ1 j

d0

E~k!

k22k j
2 ,

ū3~h,k,s!5
2 ikĀ3 j

d0

E~k!

k22k j
2 ,

E~k!5eiak2e2 iak. ~13!

Dependence onx3 is regained using a table of transfor
pairs and is given as

ū1~h,x3 ,s!52Ap

2

ihĀ1 j

d0k j
E~k j ,x3!,

ū3~h,x3 ,s!5Ap

2

Ā3 j

d0k j

]E~k j ,x3!

]x3
, ~14!

E~k j !5e2k j ux32au2e2k j ux31au.

The next step in the process is to evaluate the stresses a
separation plane. Applying both a Laplace and Fourier tra
form to eliminate dependence onx1 and time, the trans-
formed stresses at the separation plane for all the cases
cluding case 4 in Table I are represented as

s̄13~h,x3 ,s!52 ihC558 ū31C558 ū1, 3,
~15!

s̄33~h,x3 ,s!52 ihC138 ū11C338 ū3 ,3.

By noting thatū1 and ū3,3 are both odd functions ofx3 , the
normal stress evaluated at the separation plane is neces
zero. However, the shear stress,s13, is nonzero at the sepa
ration plane. If, in addition to the source/sink combination
shear stress of opposite sign and equal magnitude is ap
at the separation plane, a stress free state is achieved a
separation plane~Fig. 1 inset!. Thus the combination of~1!
source, ~2! sink and ~3! shear stress applied at th
David Hurley: Thermoelastic sources in anisotropic materials



defined
the

J. Acoust. Soc. Am.
TABLE I. The seven crystal symmetries/line-source orientations considered. Crystalographic axes are
asX, Y, Z andR45°(x1) refers to a 45° rotation about thex1 axis. Cases 1–3 and 5–7 give the strength of
shear stress dipole,G13 , in terms of the elastic constants in the nonrotated frame~i.e., the crystallographic axes
coincide with the unprimed axes!.

Structure Cubic~1! Cubic ~2! Cubic ~3a,3b! Cubic ~4!

Orientation R45°(x1) x1iX R45°(x2) x2iY ~a! R45°(x3) x3iZ
~b! x1 ,x2 ,x3iXYZ

Ru(x2),x1iX,x2iY

G13 /b0 C1112C442C12

C111C1212C44

4C44

C111C1212C44

C112C12

C11

N/A

Structure Hexagonal~5! Tetragonal~6! Orthorhombic~7!

Orientation x3iZ x1 ,x2 ,x3iXYZ x1 ,x2 ,x3iXYZ
G13 b11C332b33C13

C33

b11C332b33C13

C33

b11C332b33C13

C33
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separation plane is equivalent to a source in an elastic h
space. At this point inverting the shear stress would be d
cult if not impossible analytically. However, if the source a
sink are brought together at the separation plane, they
essarily annihilate, leaving a very simple expression for
applied shear stress:

s̄13~h,x350,s!5
2 ih

sA2p
T0G13,

s13~x1 ,x350,s!5T0G13H~ t !
]d~x1!

]x1
. ~16!

The functional form of the equivalent surface shear stres
a dipole, similar to the expression given by Rose.4 However,
in this case the amplitude of the dipole is a function of cr
tal symmetry and sample orientation. Table I gives the fo
of G13 for some symmetry/orientation combinations f
which D0 is separable in the fashion stated earlier.

Similar to the 1-D case, consider a cubic system
which G13 can be separated into two components, one tha
purely elastic and one that depends on both thermal and
tic constants~cases 1–4 in Table I!. Now consider cases 3
and 3b in detail. The surface normal for these two sam
orientations coincides and, hence, experiments corresp
ing to 3a and 3b can be performed using the same sam
The amplitude of the shear stress dipole for cases 3a an
are identical. However, for a sample orientation betwe
case 3a and 3b, the equivalent surface stress is no long
the form of a shear stress dipole.

Now consider case 4 where the sample has been rot
by some arbitrary angle about thex2 axis. For case 4, the
transformed stresses take the from

s̄13~h,x3 ,s!52 ih~C158 ū11C558 ū3!1C558 ū1 ,3

1C358 ū3 ,3,
~17!

s̄33~h,x3 ,s!52 ih~C138 ū11C358 ū3!1C358 ū1 ,3

1C338 ū3 ,3.

First note that in the rotated coordinate system,C158 andC358
are no longer zero and, as a result, the normal stress doe
vanish. Second, the form of the transformed stress does
, Vol. 115, No. 5, Pt. 1, May 2004
lf-
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afford a simple analytical solution contrary to the other ca
considered.

III. CONCLUSION

This paper examines the implication of elastic anis
ropy as it relates to thermoelastic sources. For the 1-D c
a set of analytical solutions was found for all cryst
symmetries/source orientations. These solutions form an
propriate bases set for an angular spectrum of plane wa
For the 2-D case in the limit of strong optical absorption a
for specific crystal symmetries and source orientations
buried line source was shown to be equivalent to applyin
shear stress dipole at the bounding surface. However,
trary to the isotropic case, for an arbitrary sample orientati
the equivalent surface normal stress was nonzero and
equivalent surface shear stress was not a simple dipole.
has important implications since the temporal evolution
displacement waveforms is strongly related to the chara
of the source. For instance, in isotropic materials, displa
ment waveforms related to laser ablation,9 which are accu-
rately modeled using a normal point force, are markedly d
ferent than waveforms related to thermoelastic generatio2,9
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APPENDIX

For the 1D case,N andS are defined as

N5F C558 k21rs2 C458 k2 C358 k2

C458 k2 C448 k21rs2 C348 k2

C358 k2 C348 k2 C338 k21rs2
G ,

~A1!

S5F ihT0b118 /A2ps

ihT0b218 /A2ps

ihT0b318 /A2ps
G .
2057David Hurley: Thermoelastic sources in anisotropic materials
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SinceCi j8 andb i j8 refer to a rotated coordinate system, the
of equations represented by Eq.~6! are valid for all crystal
symmetries. In order to elucidate the effect of elastic anis
ropy on the source strength, cubic symmetry will be assum
(b i j 5b0d i j ). This allows the amplitude coefficients to b
factored into two terms, one containing both elastic and th
mal terms and one containing elastic terms only:

Ā1 j /T0b05
v j

2~C358 C448 v j
22C458 C348 v j

22C358 r!

~k j2k r1!~k j2k r2!
,

Ā2 j /T0b05
v j

2~C348 C558 v j
22C458 C358 v j

22C348 r!

~k j2k r1!~k j2k r2!
,

~A2!

Ā3 j /T0b05
v j

4~C458
22C558 C448 !1v j

2r~C558 1C448 !2r2

~k j2k r1!~k j2k r2!
,

r 1Þ j , r 2Þ j , r 2Þr 1 .

For the sake of brevity,N andS for the 2-D problem will be
given for case 3 of Table I:

N115C11h
21C44k

21rs2, N135~C441C12!hk5N31,

N225~h21k2!C441rs2, N335C44h
21C11k

21rs2,
~A3!

N125N215N235N3250, S5F ihT0b0/2ps
0

ikT0b0/2ps
G .
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